Influence of the van der Waals interactions in the chemisorption of N2 on W(100)

Alejandro Pena Torres*1, Fabio Busnengo2, Pascal Larregaray3, and Cédric Crespos4

1Institut des Sciences Moléculaires (ISM) – Université de Bordeaux (Bordeaux, France) – Bâtiment A
12 351 cours de la Libération 33405 TALENCE CEDEX, France
2Instituto de Fisica Rosario (IFIR) – Ocampo y Esmeralda, Rosario (2000), Argentine
3Institut des Sciences Moléculaires, U. Bordeaux/ CNRS (ISM) – CNRS, Université Bordeaux – 351
cours de la libération, 33405 Talence cedex, France
4Institut des Sciences Moléculaires (ISM) – CNRS : UMR5255, Université de Bordeaux (Bordeaux,
France) – Bâtiment A 12 351 cours de la Libération 33405 TALENCE CEDEX, France

Résumé

The dissociative adsorption of N2 on W(100) is theoretically investigated by means of quasi-classical trajectory simulations making use of a density functional theory-based potential energy surface constructed using the vdW-DF2 functional. In this work, the resulting quasi-classical dynamics calculations are compared to those obtained using the PES built with the PW91 functional as well as to the available experimental data. An overall similar topology is found for both potential energy surfaces, however, including the van der Waals functional causes changes in the height of the potential barriers and the depthness of the wells observed before, leading to a different behaviour of the dynamics. A qualitative agreement with experiments is found for the first time for the chemisorption studied.